首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44276篇
  免费   874篇
  国内免费   307篇
测绘学   1120篇
大气科学   3454篇
地球物理   8683篇
地质学   15419篇
海洋学   3990篇
天文学   10041篇
综合类   88篇
自然地理   2662篇
  2021年   454篇
  2020年   449篇
  2019年   493篇
  2018年   1058篇
  2017年   970篇
  2016年   1275篇
  2015年   722篇
  2014年   1164篇
  2013年   2291篇
  2012年   1214篇
  2011年   1750篇
  2010年   1615篇
  2009年   2168篇
  2008年   1771篇
  2007年   1822篇
  2006年   1673篇
  2005年   1384篇
  2004年   1319篇
  2003年   1294篇
  2002年   1260篇
  2001年   1107篇
  2000年   985篇
  1999年   812篇
  1998年   812篇
  1997年   819篇
  1996年   641篇
  1995年   698篇
  1994年   658篇
  1993年   578篇
  1992年   530篇
  1991年   512篇
  1990年   531篇
  1989年   510篇
  1988年   481篇
  1987年   571篇
  1986年   493篇
  1985年   629篇
  1984年   678篇
  1983年   627篇
  1982年   559篇
  1981年   605篇
  1980年   499篇
  1979年   472篇
  1978年   478篇
  1977年   453篇
  1976年   408篇
  1975年   409篇
  1974年   419篇
  1973年   420篇
  1971年   240篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
101.
102.
This paper summarizes the observations of microseismic emissions by these authors in several areas of the Russian part of the Fennoscandian Shield to assess the potential of microseismicity to determine the present-day activity of local features in the upper part of the geologic medium. We give amplitude–frequency characteristics and the space–time distribution of naturally occurring microseismic events that are hypothesized to be of endogenous origin. We discuss the relationships these characteristics have to the regional geodynamic setting, average dimensions, and petrographic composition of active rock blocks.  相似文献   
103.
The American cranberry (Vaccinium macrocarpon Ait.) is an important part of the cultural heritage and economy of Southeastern Massachusetts, yet water quality concerns and wetland protection laws challenge its commercial production. Here, we report inputs and outputs of water, nitrogen (N), and phosphorus (P) for a 2.12‐ha cranberry bed over a 2‐year period from 2013 to 2015. Water‐budget analysis indicated that precipitation contributed 40%, floodwater 37%, irrigation 15%, and groundwater 8% of water inputs to the cranberry bed. Minor annual variation in surface water discharge (~90 mm·year?1 or 3%) contrasted with large decreases in net (= outputs ? inputs) nutrient export, from 16.2 to 9.1 kg N·ha?1·year?1 for total (dissolved + suspended particulate) nitrogen (TN) and from 3.34 to 1.47 kg P·ha?1·year?1 for total phosphorus (TP) between Years 1 and 2. Annual variation in net TN and TP export was tied to decreases in spring and summer nutrient export and controlled by the combined effects of fertilizer management, soil biogeochemistry, and hydrology. The relatively high spring TN export in Year 1 was associated with coincident increases in soil temperature and rainfall. A second factor was the timing of fertilizer application, which occurred 1 day prior to a major summer storm (i.e., third largest daily rainfall since 1926) and was responsible for up to 15% and 9% of the Year 1 TN and TP export, respectively. Nutrient budgets, which balanced water and fertilizer inputs with water, fruit, and vegetative outputs, were consistent with the burial of 21.6 kg N·ha?1·year?1 and 7.27 kg P·ha?1·year?1. Field measurements indicated that burial would increase TN and TP in the shallow (0–5 cm) rooting zone by 14% and 6%, respectively, which seemed plausible based on the relatively young age of the bed (4–5 years) and new root growth patterns in Vaccinium plants.  相似文献   
104.
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological characteristics of this near‐surface glacial weathering crust, we describe the design and operation of a capacitance‐based piezometer that enables rapid, economical deployment across multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctuations. Piezometers were employed at 10 northern hemisphere glaciers, and through the application of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003 to 3.519 m day?1, with a mean of 0.185 ± 0.019 m day?1. These results are comparable to those obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated positively with water table height but negatively with altitude and cumulative short‐wave radiation since the last synoptic period of either negative air temperatures or turbulent energy flux dominance. The large range of K observed suggests complex interactions between meteorological influences and differences arising from variability in ice structure and crystallography. Our data demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and support the notion that the weathering crust can regulate the supraglacial discharge response to melt production. The conductivities reported here, coupled with typical supraglacial channel spacing, suggest that meltwater can be retained within the weathering crust for at least several days. Not only does this have implications for the accuracy of predictive meltwater run‐off models, but we also argue for biogeochemical processes and transfers that are strongly conditioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes, and nutrients to downstream ecosystems. Because continued atmospheric warming will incur rising snowline elevations and glacier thinning, the supraglacial hydrological system may assume greater importance in many mountainous regions, and consequently, detailing weathering crust hydraulics represents a research priority because the flow path it represents remains poorly constrained.  相似文献   
105.
Astronomy Letters - Results of the spectroscopic observations at the 1.5-m Russian–Turkish telescope for another group of 12 X-ray sources discovered by the eROSITA telescope onboard the SRG...  相似文献   
106.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   
107.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   
108.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   
109.

Satellite altimetry has been widely used to determine surface elevation changes in polar ice sheets. The original height measurements are irregularly distributed in space and time. Gridded surface elevation changes are commonly derived by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height change estimates. This article assesses how methodological choices related to those two steps affect the accuracy of surface elevation changes, and how well this accuracy is represented by formal uncertainties. In a simulation environment resembling CryoSat-2 measurements acquired over a region in northeast Greenland between December 2010 and January 2014, different local topography modeling approaches and different cell sizes for RAA, and four interpolation approaches are tested. Among the simulated cases, the choice of either favorable or unfavorable RAA affects the accuracy of results by about a factor of 6, and the different accuracy levels are propagated into the results of interpolation. For RAA, correcting local topography by an external digital elevation model (DEM) is best, if a very precise DEM is available, which is not always the case. Yet the best DEM-independent local topography correction (nine-parameter model within a 3,000 m diameter cell) is comparable to the use of a perfect DEM, which exactly represents the ice sheet topography, on the same cell size. Interpolation by heterogeneous measurement-error-filtered kriging is significantly more accurate (on the order of 50% error reduction) than interpolation methods, which do not account for heterogeneous errors.

  相似文献   
110.
Ostrovskii  A. G.  Zatsepin  A. G.  Shvoev  D. A.  Volkov  S. V.  Kochetov  O. Yu.  Olshanskiy  V. M. 《Oceanology》2020,60(6):861-868

The article is devoted to the development of an autonomous profiling system for measuring the aquatic environment under ice. The system moves up and down in the water column along a cable with a load at the lower end, which is lowered into a lane in the ice. The system carrier is designed for transporting an acoustic Doppler current profiler and a salinity, temperature, and pressure probe. The system will be useful for long-term measurements of vertical profiles of the current speed and marine environment parameters, as well as ice draft. The article describes in detail the structure and operation of the system. The hydraulic scheme of the carrier buoyancy system is presented.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号